УПРАВЛЕНИЕ ОБРАЗОВАНИЯ И НАУКИ ЛИПЕЦКОЙ ОБЛАСТИ ГОБПОУ «ЛИПЕЦКИЙ МАШИНОСТРОИТЕЛЬНЫЙ КОЛЛЕДЖ»

ОП 05 Метрология, стандартизация и сертификация

Методические указания по выполнению самостоятельных работ для студентов-заочников по специальности 15.02.08 Технология машиностроения среднего профессионального образования

Составлены в соответствии с Федерал стандартом по специальности СПО 15.02.	ьным государственным образовательным 08 Технология машиностроения
Автор: Ефимова Е.С. преподаватель об профессиональных модулей ЛМсК	бщепрофессиональных дисциплин и
ОДОБРЕНО цикловой комиссией «Технология машиностроения»	СОГЛАСОВАНО
Председатель цикловой комиссии <u>Н.С. Попова</u>	Зам. директора по учебной работе Ю.А. Гуськова

30. 08. 2019 г.

Протокол № 1 от 30. 08. 2019 г.

СОДЕРЖАНИЕ

		cip.
Bı	ведение	4
1.	Виды и формы самостоятельной работы	6
2.	Общие методические указания руководства самостоятельной работой студентов	6
3.	Методические рекомендации для студентов по видам самостоятельной работы	7
4.	Перечень рекомендуемой литературы	8
5.	Задания к контрольной работе	10
6.	Варианты контрольной работы	32
7.	Подготовка к промежуточной аттестации	33

Введение

Контрольные задания с краткими методическими указаниями для студентовзаочников составлены в соответствии с содержанием рабочей программы ОП 05 Метрология, стандартизация и сертификация для специальности 15.02.08 Технология машиностроения (заочной формы обучения).

ОП 05 Метрология, стандартизация и сертификация изучается в течение одного семестра. Общий объем времени, отведенный на выполнение самостоятельной работы, составляет в соответствии с учебным планом и рабочей программой — 126 часов.

Методические указания призваны помочь студентам правильно организовать самостоятельное выполнение контрольных заданий при овладении содержанием ОП 05 Метрология, стандартизация и сертификация, закреплении знаний и умений.

Контрольная работа направлена на освоение студентами следующих результатов обучения согласно ФГОС СПО специальности 15.02.08 Технология машиностроения и требованиям рабочей программы ОП 05 Метрология, стандартизация и сертификация:

в результате освоения дисциплины обучающиеся должны уметь:

Код	Наименование результата обучения						
У1	оформлять технологическую и техническую документацию в соответствии с действующей нормативной базой на основе использования основных положений метрологии, стандартизации и сертификации в производственной деятельности						
У2	применять документацию систем качества						
У3	применять требования нормативных документов к основным видам продукции (услуг) и процессов						

знать:

Код	Наименование результата обучения
3н 1	документацию систем качества
3н 2	единство терминологии, единиц измерения с действующими стандартами и международной системой единиц СИ в учебных дисциплинах
3н 3	основные положения и определения метрологии, стандартизации и сертификации
3н 4	основы повышения качества продукции

С целью приведения содержания рабочей программы учебной дисциплины в соответствие с требованиями рынка труда осваиваются следующие трудовые действия, необходимые умения и знания профессионального стандарта Специалист по технологиям материалообрабатывающего производства уровень № 5, а также требований WS Полимеханика — автоматизация:

Трудовая функция:

Код	Наименование результата обучения
ТФ 1	Разработка технологических процессов изготовления изделий машиностроения
ТФ 2	Контроль и управление технологическими процессами изготовления изделий
	машиностроения низкой сложности

Трудовые действия профессионального стандарта:

Код	Наименование результата обучения	
ΤД _{1.1} ПС	Анализ технологических требований, предъявляемых к изделию	
ΤД _{1.2} ПС	Выбор средств контроля технологических требований, предъявляемых к изделию	
ΤД _{2.1} ПС	Выявление причин брака в изготовлении изделий	

Умения профессионального стандарта:

Код	Наименование результата обучения		
$\mathbf{y}_{1.1}\Pi\mathbf{C}$	Анализировать возможности средств контроля технических требований		
$\mathbf{y}_{2.1}$ ПС	Анализировать производственную ситуацию и выявлять причины брака в изготовлении изделий		

Знания профессионального стандарта:

Код	Наименование результата обучения		
$3_{\rm H_{1.1}}\Pi C$	Технические требования, предъявляемые к изготавливаемым изделиям		
Зн _{1.2} ПС	Основные методы и способы контроля технических требований		
Зн _{1.3} ПС	Основные средства контроля технических требований		
Зн _{2.1} ПС	Виды брака в изготовлении изделий		

С целью подготовки студентов к участию в конкурсе WS содержание рабочей программы учебной дисциплины ориентировано на следующие технические требования WS Полимеханика - автоматизация:

Технические требования WS:

демонстрация умений и знаний

Код	Наименование результата обучения			
TT ₁ WS	Ітение чертежа и технического задания			
TT ₂ WS	Обработка, проверка и поддержание точности размеров в пределах погрешностей			

Вышеперечисленные умения, знания и практический опыт направлены на создание условий для формирования у студентов следующих профессиональных и общих компетенций:

- ПК 3.2 Проводить контроль соответствия качества деталей требованиям технической документации
- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- OК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- OК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- OК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- ОК 6. Работать в команде, эффективно общаться с коллегами, руководством, клиентами.
- ОК 7. Брать ответственность за работу членов команды (подчиненных), за результат выполнения заданий.
- OК 8. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.
- OК 9. Выполнять правила техники безопасности и требования по охране труда.

1. Виды и формы самостоятельной работы

- систематическая проработка учебной и специальной технической литературы;
- ответы на вопросы и выполнение расчётов (по методическим указаниям, составленным преподавателем);
 - оформление практических работ и подготовка к их защите;
 - подготовка к зачёту.

Самостоятельная работа обучающегося (всего)	126
в том числе:	
- систематическая проработка конспектов занятий, учебной и	
специальной технической литературы	62
- ответы на вопросы и выполнение расчётов (по методическим	
указаниям, составленным преподавателем);	50
- оформление практических работ и подготовка к их защите;	
- подготовка к зачёту.	10
	4

2. Общие методические указания руководства самостоятельной работой студентов

- 1. Четко ставить задачу предстоящей самостоятельной работы.
- 2. Добиваться, чтобы студенты выполняли самостоятельную работу осознанно, т.е. ясно представляли теоретические основы выполняемых действий.
- 3. Вовремя предупреждать студентов о типичных ошибках и возможных способах их избегания.
- 4. Оказывать студентам помощь, не вмешиваясь в их работу без необходимости.
- 5. При допущении студентами ошибок подводить их к осознанию и пониманию сути и причин ошибок, с тем, чтобы студенты самостоятельно нашли способ их предупреждения и устранения.
- 6. Практиковать промежуточный контроль хода и результатов самостоятельной работы студентов.
- 7. Рационально распределять задания самостоятельной работы по сложности с учетом индивидуальных особенностей и способностей студентов.
- 8. Стимулировать и поощрять проявления творческого подхода студентов к выполнению заданий.
 - 9. Умело сочетать индивидуальную и коллективную работу студентов.
- 10. При оценке хода и итогов самостоятельной работы студентов исходить из положительных моментов в их работе.
- 11. Постоянно практиковать в ходе самостоятельной работы обращение студентов к разным источникам информации.

3. Методические рекомендации для студентов по видам самостоятельной работы:

3.1 Систематическая проработка конспектов занятий, учебной и специальной технической литературы

- 1. Внимательно прочитайте материал по конспекту, составленному на учебном занятии.
 - 2. Прочитайте тот же материал по учебнику, учебному пособию.
- 3. Постарайтесь разобраться с новыми терминами. Часто незнание терминологии мешает студентам воспринимать материал на теоретических и лабораторно-практических занятиях на должном уровне.
- 4. Ответьте на контрольные вопросы для самопроверки, имеющиеся в учебнике или предложенные в данных методических указаниях.
- 5. Кратко перескажите содержание изученного материала «своими словами».
 - 6. Заучите название основные понятия и определения.
- 7. Освоив теоретический материал, приступайте к выполнению графических и расчетных заданий.

Показатели оценки результатов внеаудиторной самостоятельной работы:

- качество уровня освоения учебного материала;
- -умение использовать теоретические знания при выполнении практических задач или ответе на практико-ориентированные вопросы;
 - обоснованность и четкость изложения ответа.

3.2 Оформление отчетов по практическим работам и подготовка их к защите

Обратитесь к методическим указаниям по проведению практических работ и оформите работу, согласно заданию своего варианта.

Повторите основные теоретические положения по теме практической работы, используя конспект лекций или методические указания.

Сформулируйте выводы по результатам работы, выполненной на учебном занятии. В случае необходимости закончите выполнение графической части.

Показатели оценки результатов внеаудиторной самостоятельной работы

- оформление практических и лабораторных работ в соответствии с методическими указаниями;
 - качественное выполнение всех этапов работы;
- необходимый и достаточный уровень понимания цели и порядка выполнения работы;

3.3 Ответы на вопросы и выполнение расчётов контрольной работы

Прежде чем приступить к ответам на вопросы и решению задач, необходимо изучить соответствующий материал программы, так как без его усвоения невозможно правильно ответить на вопросы или решить задачу.

Номера вопросов и задач, подлежащих выполнению в качестве контрольных заданий, устанавливаются по таблицам вариантов в соответствии с порядковым номером студента в журнальном списке.

При выполнении контрольной работы ответы на вопросы должны быть четкими и ясными, по существу поставленных вопросов. Необходимо давать

поясняющие суть ответов эскизы, схемы, чертежи. Допускается вклеивать сложные чертежи, схемы, эскизы, выполненные копированием.

Рекомендуется приводить практические примеры из практики работы студента-заочника.

Решение задач должно сопровождаться необходимыми расчетами, буквенные обозначения в формулах должны быть объяснены. Обязательно указывается литература, откуда взяты формулы и значения отдельных величин.

Контрольная работа выполняется на листах писчей бумаги формата А4 четким разборчивым почерком ручкой черного цвета. Не допускается выделение частей текста ручкой красного цвета. Каждая страница (кроме титульного листа) должна иметь рамку и основную надпись согласно ГОСТ 2.104-68. В конце работы приводится список использованной литературы с указанием автора, издательства и года издания, подпись студента, дата выполнения работы и оставляется чистая страница для рецензии.

Показатели оценки результатов внеаудиторной самостоятельной работы:

- качество уровня освоения учебного материала;
- умение использовать теоретические знания при выполнении практических задач или ответе на практико-ориентированные вопросы;
 - обоснованность и четкость изложения ответа;
 - оформление работы в соответствии с методическими рекомендациями.

3.4 Подготовка к зачёту

Анализ вопросов для зачёта и выявление пробелов в знаниях и умениях, их корректировка.

3.5 Порядок выполнения контрольной работы

- четко заполняется титульный лист с указанием шифра студента, варианта контрольной работы;
 - на втором листе записывается содержание контрольной работы;
- на третьем листе записывается номер и содержание вопроса или условие задачи и ответ или решение задачи;
 - данные, взятые из таблиц, подставляются в условие задачи по смыслу;
 - в конце работы приводится список использованной литературы.

4. Перечень рекомендуемой литературы

Основная литература:

- 1. Багдасарова Т.А. Допуски и технические измерения. Рабочая тетрадь. М.: ОИЦ «Академия», 2015
- 2. Багдасарова Т.А. Допуски и технические измерения. Контрольные материалы. М.: ОИЦ «Академия», 2015
- 3. Багдасарова Т.А. Допуски и технические измерения. Лабораторнопрактические работы. – М.: ОИЦ «Академия», 2015
- 4. Зайцев С.А. Метрология, стандартизация и сертификация в машиностроении. М.: ОИЦ «Академия», 2017
- 5. Зайцев С.А., Куранов А.Д., Толстов А.Н. Допуски и технические измерения. М.: ОИЦ «Академия», 2015

Дополнительная литература:

- 6. Зайцев С.А. Допуски и технические измерения. М.: ОИЦ «Академия», 2015
 - 7. Зайцев С.А. Технические измерения. М.: ОИЦ «Академия», 2018 **Нормативно- техническая документация:**
- 1. Единая система допусков и посадок СЭВ в машиностроении и приборостроении: Справочник: В 2. -М.: ЕСКД. Общие правила выполнения чертежей.
- 2. ГОСТ 2.307-2011. ЕСКД. Нанесение размеров и предельных отклонений.
- 3. ГОСТ 2.308-2011. ЕСКД. Указания на чертежах допусков формы и расположения поверхностей.
 - 4. ГОСТ 2.309-73. ЕСКД. Обозначение шероховатости поверхностей.
- 5. ГОСТ 2.320-82. ЕСКД. Правила нанесения размеров, допусков и посадок конусов.
- 6. ГОСТ 2.409-74. ЕСКД. Правила выполнения чертежей зубчатых (шлицевых) соединений.
- 7. ГОСТ 18358-93 ... ГОСТ 18369-73. Калибры-скобы диаметром от 1 до 260 мм. Конструкция и размеры.
- 8. ГОСТ 14807-69 ... ГОСТ 14827-69. Калибры-пробки гладкие диаметром от 1 до 360 мм. Конструкция и размеры.

Периодические издания (отечественные журналы):

- 1. «Вестник машиностроения»
- 2. «Стружка»

Интернет-ресурсы:

- 1. Мир станочника. Техническая литература [Электронный ресурс]. Режим доступа: http:// www.mirstan.ru, свободный. Загл. с экрана.
- 2.Портал нормативно-технической документации [Электронный ресурс]. Режим доступа: http://www.pntdoc.ru, свободный. Загл. с экрана.

5. Задания к контрольной работе. Вопросы с 1 по 20.

- 1. Роль стандартизации в развитии народного хозяйства страны. Концепция развития стандартизации в отрасли.
- 2. Основные задачи и направления работы по стандартизации.
- 3. Основные термины и понятия в области стандартизации: стандартизация, стандарт, нормативно-технический документ (НТД), технические условия.
- 4. Категории стандартов, сфера действия и область применения каждой категории.
- 5. Виды стандартов на продукцию. Содержание стандартов отдельных видов.
- 6. Порядок разработки, внедрения и обновления стандартов.
- 7. Органы и службы стандартизации в стране, их деятельность.
- 8. Службы стандартизации на предприятии и их задачи (в ответ включить материалы о службе стандартизации на предприятии, на котором работает студент).
- 9. Комплексная стандартизация, её основные задачи, цели, методические принципы работ.
- 10.Опережающая стандартизация, её основные задачи, цели, методические принципы организации работ.
- 11. Унификация и её виды. Показатели уровня унификации.
- 12. Агрегатирование и модульные принципы проектирования систем машин и механизмов.
- 13. Стандартизация параметрических рядов.
- 14. Предпочтительные числа и размеры.
- 15.ЕСКД, её сущность. Основные разделы ЕСКД, их содержание.
- 16.ГСИ, её назначение. Краткая характеристика групп входящих в нее стандартов.
- 17.ЕСТД, ее назначение и содержание.
- 18. Нормоконтроль конструкторской и технологической документации, его сущность и назначение.
- 19. Экономическая эффективность стандартизации.
- 20. Участие России в международной стандартизации и её значение для развития внешней торговли, организации совместных предприятий.

Задача 21-30.

Для трех видов посадок (таблица 1):

- 1. Определить предельные отклонения по таблицам ГОСТ 25347-82.
- 2. Рассчитать предельные размеры отверстия и вала.
- 3. Изобразить в масштабе поля допусков отверстия и вала и определить вид посадки (с зазором, с натягом или переходная).
- 4. Рассчитать наибольшие и наименьшие зазоры (натяги), допуск посадки.
- 5. В третьем примере определить годность детали по заданным действительным размерам.
- 6. Примечание: В контрольной работе следует написать последовательно решение первого примера, затем второго и третьего.

Исходные данные для решения задачи представлены в таблице 1.

Таблица 1- Исходные данные к задачам 21-30

№ задачи	Пример 1	Пример 2	Пример 3		
	Соединения			Действительные размеры, мм	
21	H11	475 H7	N6	$D_r = 89,972$	
	$050 \frac{1}{d11}$	$075\frac{1}{js5}$		$d_r = 89,992$	
22	H11	N7 N7	70° P6	D _r =84,944	
	$048 \frac{11}{h11}$		$085\frac{10}{n5}$	$d_r = 85,006$	
23	41 H9	M8	R7	$D_r = 79,950$	
	$045\frac{d}{d9}$	$063\frac{1}{k7}$	$ \emptyset 80 {h6} $	$d_r = 79,976$	
24	H8	M7	U8	$D_r = 74,902$	
	$040\frac{1}{e8}$	$056 \frac{h6}{h6}$	$075 \frac{1}{h7}$	$d_r = 74,975$	
25	H7	H8	P7	$D_r = 70,962$	
	$\emptyset 38 \frac{17}{f7}$	$050 \frac{m7}{m7}$	$071 {h6}$	$d_r = 70,998$	
26	D9	K7	H6	$D_r = 63,021$	
	$036\frac{1}{h8}$	$045 \frac{1}{h6}$	$\emptyset 63\frac{1}{n5}$	$d_r = 63,018$	
27	620^{E9}	M20 H7	WE 6 H8	$D_r = 56,038$	
	$030\frac{1}{h8}$	$038 \frac{m}{m6}$	$056\frac{1}{s7}$	$d_r = 56,092$	
28	F8	<i>K</i> 8	MEO H7	$D_r = 50,031$	
	$\emptyset 28 \frac{1}{h6}$	$036 \frac{1}{h7}$	$050 \frac{1}{t6}$	$d_r = 50,066$	
29	<i>G</i> 7	M8	Н6	$D_r = 45,011$	
	$\emptyset 25 \frac{d}{h6}$	$030 \frac{1}{n7}$	$0.045 \frac{110}{p5}$	$d_r = 45,030$	
30	F8	JS7	#6	D _r =37,994	
	$020 \frac{1}{h8}$	$028\frac{3}{h6}$	$038\frac{1}{r5}$	$d_r = 38,052$	

Методические указания для решения задач 21-30.

Рекомендуется следующая последовательность решения и оформления задачи.

Дано соединение $\emptyset 50 \frac{H7}{js6}$

Решение

- 1. Посадка в системе отверстия (отверстие ϕ 50H7 основное), отверстие в квалитете 7, вал в квалитете 6.
 - 2. Предельные отклонения:

для отверстия Ф50Н7

$$ES=+25$$
мкм= $+0,025$ мм, $EI=0$ [9, т. 1, табл 3.20 с.33]

для вала Ø50js 6

$$es = +8$$
мкм = $+0,008$ мм, $ei = -8$ мкм = $-0,008$ мм [9, т. 1, табл 3.19 с 33]

3. Предельные размеры:

для отверстия:

$$D_{max} = D + ES = 50 + 0,025 = 50,025 MM,$$

$$D_{min} = D + E1 = 50 + 0 = 50_{MM};$$

для вала:

$$d_{\text{max}} = d + e_{\text{S}} = 50 + 0,008 = 50,008 \text{MM},$$

$$d_{min} - d + ei = 50 + (-0,008) = 49,992$$
MM.

4. Допуск:

отверстия
$$TD = ES - EI = 0.025 - 0 = 0.025$$
мм, вала $Td = es - ei = 0.008 - (-0.008) = 0.016$ мм.

5. Схема полей попусков

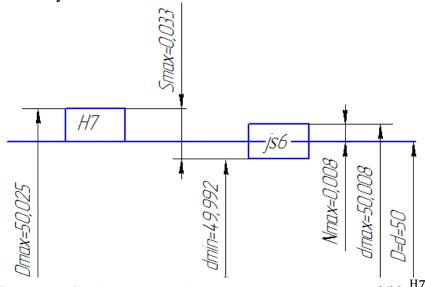


Рисунок 1- Схема полей допусков соединения $\emptyset 50 \frac{H7}{is6}$

Из схемы видно, что в соединении переходная посадка (поля допусков отверстия и вала перекрываются).

6. Расчет предельных зазоров (натягов).

Переходная посадка характеризуется наибольшими значениями зазора (S_{max}) и натяга (N_{max}).

$$S_{\text{max}} = ES - ei = 0.025 - (-0.008) = 0.033 \text{MM}$$

$$N_{\text{max}} = \text{es} - \text{EI} = 0,008 - 0 = 0,008 \text{MM}.$$

7. Допуск посадки

$$T(S,N) = S_{max} + N_{max} = 0.033 + 0.008 = 0.041$$
 мм, или

$$T\Pi = TD + Td = 0.025 + 0.016 = 0.041 \text{ mm}.$$

8. Годность детали определяется сравнением действительного размера с двумя предельными:

$$D_{max} > D_r > D_{min}$$
, или $d_{max} > d_r > d_{min}$.

Если в нашем примере действительный размер отверстия $D_r = 50,019$ мм, то отверстие годное, поскольку выполняется условие: 50,025 > 50,019 > 50)

Если в нашем примере действительный размер вала $d_r = 50,010$ мм, то вал не годен, поскольку его действительный размер больше наибольшего предельного размера: 50,008 < 50,010 > 49,992

Задача 31-35.

Начертить эскиз детали (рис.2), нанести размеры и обозначения допусков формы и расположения поверхностей в соответствии с номером задачи (табл. 2). Расшифровать обозначения допусков формы и расположения поверхностей.

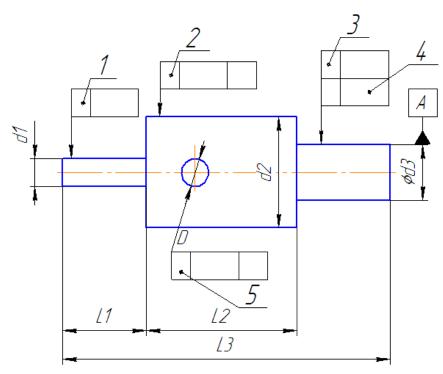


Рисунок 2 – Чертёж детали.

Таблица 2 – Исходные данные к задачам 31-35.

Номер задачи	31	32	33	34	35
d1	8	10	16	18	20
d2	40	45	50	63	38
d3	20	18	24	25	15
D	14	6	8	12	10
L1	16	20	32	36	40
L2	30	35	40	45	50
L3	66	85	95	100	120
Степени точности					
Рамка 1. Допуск цилиндричности	5	-	-	8	10
Рамка 2. Допуск радиального биения	7	-	9	6	-
относительно базы А					
Рамка 3. Допуск профиля продольного сечения	10	8	_	-	6
тамка 5. допуск профили продольного сечении	10	_			
Рамка 4. Допуск круглости	-	6	7	8	-
	-		7	8 -	9

Задача 36-40.

Начертить эскиз детали (рис.3), нанести размеры и обозначения допусков формы и расположения поверхностей в соответствии с номером задачи (табл. 3). Расшифровать обозначения допусков формы и расположения поверхностей.

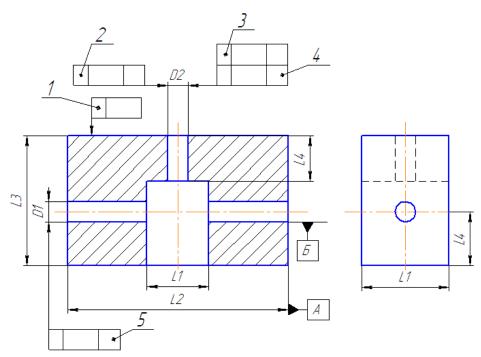


Рисунок 3 — Чертёж детали. Таблица 3 — Исходные данные к задачам 36-40.

таолица з теходиые данные к зада аш 30 40.					
Номер задачи	36	37	38	39	40
D1	8	10	15	20	28
D2	12	6	20	15	32
L1	24	30	36	40	50
L2	50	60	70	75	90
L3	40	45	50	60	80
L4	14	16	13	22	28
Степени точности					
Рамка 1. Допуск плоскостности	10	-	-	7	6
Рамка 2. Допуск пересечения осей относительно	8	-	6	10	-
базы Б в радиальном выражении					
Рамка 3. Допуск симметричности относительно базы А	6	9	-	-	11
в радиальном выражении					
Рамка 4. Допуск перпендикулярности относительно базы Б	-	7	10	9	-
Рамка 5. Допуск соосности относительно базы Б в	-	5	8	-	9
диаметральном выражении					

Методические указания для решения задач 31-40.

Рекомендуется следующая последовательность решения и оформления задачи.

- допуск радиального биения наружной цилиндрической поверхности диаметром 50 мм относительно базы А равен 0,003 мм. База А – ось цилиндрической поверхности диаметром 20 мм.

допуск цилиндричности наружной цилиндрической поверхности диаметром 10 мм равен 0,0025 мм.

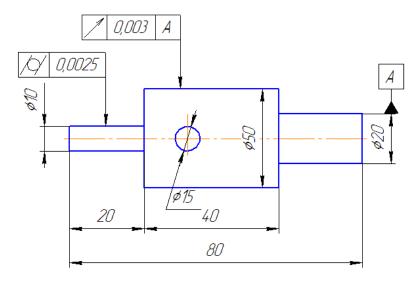


Рисунок 4 – Чертёж детали.

Залача 41-50.

Для измерения заданной в таблице 4 поверхности детали выбрать универсальный измерительный инструмент.

Таблица 4 – Исходные данные к задачам 41-50.

Поверхнос	сть - отверстие	Поверхность - вал			
№ задачи	Размер, поле допуска	№ задачи	Размер, поле допуска		
41	15H7	46	20js14		
42	30JS11	47	40h9		
43	40K7	48	60e8		
44	60E9	49	80f9		
45	90D9	50	100d8		

Методические указания для решения задач 41-50.

Рекомендуется следующая последовательность решения и оформления задачи.

Задано отверстие *Ф*25H7. Необходимо выбрать универсальный измерительный инструмент.

Решение

1. Предельные отклонения отверстия Ø 25H7:

$$ES = +21 \text{ MKM} = +0.021 \text{MM}$$

$$EI = 0$$

[9, т. 1, табл. 3.20, с.42]

- 2. Допуск отверстия TD = ES EI = +0.021 0 = 0.021 мм.
- 3. Допускаемую погрешность измерения $\delta = 6$ мкм определяем по интервалу размеров 18-30 мм и 7-му квалитету. [9, т. 2 табл.1.12, с.24]
- 4. Выбираем нутромер индикаторный ГОСТ 9244-86 с ценой деления отсчетного устройства 0,001мм и установкой по концевым мерам I класса с боковинами [9, т. 2 табл.1.17, с. 44]

Предельная погрешность измерения данным нутромером 5,5мкм, что меньше допускаемой.

Задача 51-60.

Для заданного в таблице 5 размера детали (отверстия или вала):

- 1. Определить предельные и исполнительные размеры проходного (ПР) и непроходного (НЕ) калибров.
- 2. Построить схему расположения полей допусков.
- 3. Определить возможность эксплуатации калибра по заданному действительному размеру.

Таблица 5 – Исходные данные к задачам 41-50.

Поверхность - отверстие			Поверхность - вал			
№	Размер,	Действительный	№	Размер,	Действительный	
задачи	поле	размер калибра, мм	задачи	поле	размер калибра, мм	
	допуска			допуска		
51	10 K 6	$\Pi P_{\rm r} = 9,9950$	56	15k6	$\Pi P_{\rm r} = 15,016$	
52	18F7	$\Pi P_{\rm r} = 18,015$	57	120t7	$\Pi P_{\rm r} = 19,960$	
53	30E8	$\Pi P_{\rm r} = 30,035$	58	26d8	$\Pi P_{\rm r} = 24,940$	
54	40D9	$\Pi P_r = 40,079$	59	35h9	$\Pi P_r = 34,993$	
55	50H9	$HE_r = 50,058$	60	45f9	$HE_{r} = 44,942$	

Методические указания для решения задач 51-55.

Рекомендуется следующая последовательность решения и оформления задачи.

Определить предельные и исполнительные размеры калибров - пробок для отверстия диаметром D=60 мм с полем допуска K7, т.е. $\phi60$ K7, $\Pi P_r = \phi59,985$ мм; $HE_r = \phi~60,01$ мм.

Решение

1. Предельные отклонения отверстия ϕ 69K7:

$$ES = +9_{MKM} = +0.009 MM$$

$$EI = -21 \text{MKM} = -0.021 \text{ MM}$$

2. Предельные размеры отверстия:

$$D_{\text{max}} = D + ES = 60 + 0,009 = 60.009 \text{ MM}.$$

$$D_{min} = D + EI = 60 + (-0.021) = 59.979 \text{ MM}.$$

3. Для квалитета 7 и интервала размеров свыше 50 до 80 отклонения и допуски калибров:

Z = 4 мкм = 0,004 мм; [9, т.2, табл. 1.3,с. 8]

y = 3 мкм = 0,003 мм; [9, т.2, табл. 1.5,с. 9]

H = 5 мкм = 0,005 мм. [9, т.2, табл. 1.5,с. 9]

4. Схема расположения полей допусков

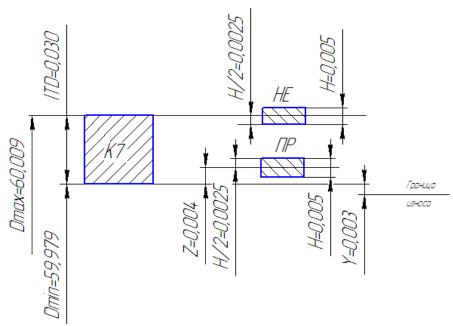


Рисунок 5 - Схема расположения полей допусков.

5. Предельные размеры калибров:

$$\Pi P_{max} = D_{min} + Z + H/2 = 59,979 + 0,004 + 0,005/2 = 59,9855$$
 mm $\Pi P_{min} = D_{min} + Z - H/2 = 59,979 + 0,004 - 0,005/2 = 59,9805$ mm

$$\Pi P_{\text{W3H}} = D_{\text{min}} - Y = 59,979 - 0,003 = 59,976 \text{ MM}.$$

$$HE_{max} = D_{max} + H/2 = 60,009 + 0,005/2 = 60.0115 \text{ MM}$$

$${\rm HE_{min}} = {\rm D_{max}}$$
 - ${\rm H/2} = 60{,}009$ - ${\rm 0.005/2} = 60{,}0065$ мм

6. Исполнительные размеры калибров (поставляемые на чертеже):

$$\Pi P = 59,9855_{-0.005}; \hat{H}E = 60,0115_{-0.005}$$

7. Возможность эксплуатации калибра определяется из условия:

 $\Pi P_{\text{max}} > \Pi P_{\text{r}} > \Pi P_{\text{изн}}$

 $HE_{max} > HE_r > HE_{min}$

59,9855 > 59,985 > 59,976 - проходным калибром пользоваться можно.

60,0115 > 60,011 > 60,0065 - непроходным калибром пользоваться можно.

Методические указания для решения задач 56-60.

Рекомендуется следующая последовательность решения и оформления задачи.

Определить предельные и исполнительные размеры калибров - скоб для вала диаметром d=60 мм с полем допуска g6.

Решение

1. Предельные отклонения вала \$\phi60g6\$:

$$es = -10 \text{ MKM} = -0.010 \text{ MM}$$

$$ei = -29 \text{ MKM} = -0.029 \text{ MM}$$

2. Предельные размеры вала:

$$d_{max} = d + es = 60 + (-0.010) = 59,990 \text{ mm}$$

$$d_{min} = d + ei = 60 + (-0.029) = 59.971$$
 MM.

3. Для квалитета 6 и интервала размеров свыше 50 до 80 отклонения и допуски калибров:

 $Z_1 = 4$ мкм = 0,004 мм [9, т.2, табл. 1.5,с. 9] $Y_1 = 3$ мкм = 0,003 мм [9, т.2, табл. 1.5,с. 9] $H_1 = 5$ мкм = 0,005 мм [9, т.2, табл. 1.3,с. 8]

4. Схема расположения полей допусков.

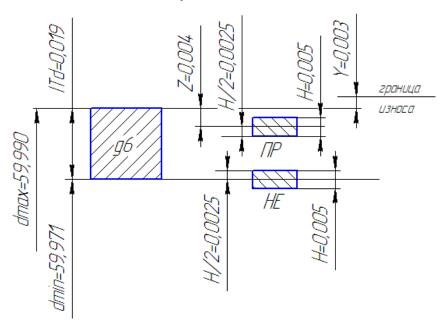


Рисунок 6 - Схема расположения полей допусков.

5. Предельные размеры калибров:

$$\begin{split} &\Pi P_{max} = d_{max} - Z_1 + H_1/2 = 59,990 - 0,004 + 0,005/2 = 59,9885 \text{ мм} \\ &\Pi P_{min} = d_{max} - Z_1 - H_1/2 = 59,990 - 0,004 - 0,005/2 = 59,9835 \text{ мм} \\ &\Pi P_{u3H} = d_{max} + Y_1 = 59,990 + 0,003 = 59,993 \text{ мм} \\ &H E_{max} = d_{min} + H_1/2 = 59,971 + 0,005/2 = 59,9735 \text{ мм} \\ &H E_{min} = d_{min} - H_1/2 = 59,971 - 0,005/2 = 59,9685 \text{ мм} \\ &6. \text{ Исполнительные размеры калибров (проставляемые на чертеже):} \\ &\Pi P = 59,9835^{+0,005}; \text{ HE} = 59,9685^{+0,005} \\ &7. \text{ Возможность эксплуатации калибра определяется из условия:} \\ &\Pi P_{max} > \Pi P_r > \Pi P_{u3H} \end{split}$$

Задача 61-70.

 $HE_{max} > HE_r > HE_{min}$

Для заданных в таблице 6 подшипника и сопрягаемых деталей:

- 1. Определить по справочнику ЕСДП СЭВ отклонения колец подшипника и отклонения сопрягаемых деталей.
- 2. Изобразить графически поля допусков колец подшипников, отверстия корпуса и вала.
- 3. Рассчитать предельные зазоры (натяги) в соединениях деталей с подшипником.

Таблица	6 -	Исходные	панные в	с запачам	61-70
таолица	U -	ислодиыс	даппыст	х задачам	OI-/O.

No	Радиальный	Номинальный		Номиналы	ный	наружный
задачи	подшипник.	внутренний ди	иаметр,	диаметр,	поле	
	Класс	поле допуска вала		отверстия		
61	P0	10g6			30H7	
62	P6	15p6		35N7		
63	P5	20g5		47JS6		
64	P4	25n5		52M6		
65	P2	30k4		62H4		
66	P0	35f6		72K7		
67	P6	40n6		80P7		
68	P5	45js5		85G6		
69	P4	50m5		90P6		
70	P2	60m4			110K5	

Методические указания для решения задач 61-70.

Рекомендуется следующая последовательность решения и оформления задачи.

Задан радиальный подшипник класса P5 с наружным диаметром D=80 мм и внутренним диаметром d=35 мм. Отверстие корпуса D=80JS6, вал d=35g5.

Решение

1. Предельные отклонения колец подшипника (по D_m ; d_m):

 D_m =80 мм, es=0, ei = -9 мкм = - 0,009 мм

 $d_m = 35$ мм, ES=0, EI = -8 мкм = -0,008мм [9, т.1, табл. 3.45-3.46 с. 75-76]

2. Отклонения сопрягаемых деталей:

Отверстия D = 80 JS6

ES = +9.5 MKM = +0.0095 MM

EI = -9.5 MKM = -0.0095 MM [9, T.1, Ta6]

[9, т.1, табл. 3.20 с. 41]

вала d=35g5

es = -9 MKM = -0.009 MM

ei = -20 MKM = -0.020 MM

[9, т.1, табл. 3.19 с. 34]

3. Схема полей допусков.

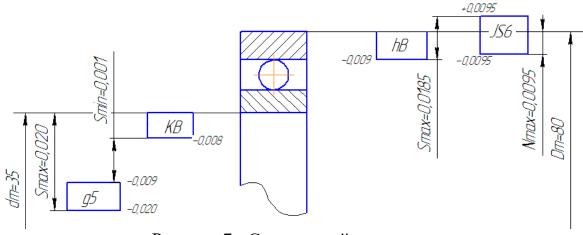


Рисунок 7 - Схема полей допусков.

4. Расчет предельных зазоров (натягов).

По диаметру D поля допусков отверстия и вала (наружного кольца подшипника) перекрываются - посадка переходная, по диаметру d поля допуска отверстия (внутреннего кольца подшипника) расположено над полем допуска вала - посадка с зазором.

По наружному кольцу D:

 $S_{max} = ES - ei = 0,0095 - (-0.009) = 0,0185 \text{ MM}$

 $N_{max} = es - EI = 0 - (-0,0095) = 0,0095$ mm

По внутреннему кольцу d:

 $S_{max} = ES - ei = 0 - (-0.020) = 0.020 \text{ MM}$

 $S_{min} = EI - es = -0,008 - (-0,009) = 0,001 \text{ MM}$

Задача 71-80.

Назначить стандартные допустимые отклонения на угловые размеры шаблона, если его погрешности не должны превышать 1/5 погрешности проверяемых деталей, изготовляемых по степени точности (см. графу 2 таблицы 7).

Таблица 7 - Исходные данные к задачам 61-70.

No	Степень	точности				Эскиз шаблона
задачи	детали	точности	Размеры шаблона			Эскиз шаолона
зада т	детали		A,	В,	α,	
			MM	MM	0	
71	14		10	30	15	*
72	13		12	36	20	/ \ 2 \
73	11		16	48	25	
74	14		20	60	30	D
75	13		25	75	35	
76	11		30	90	40	
77	14		40	100	45	
78	13		45	100	50	
79	11		50	100	55	
80	14		60	100	60	

Методические указания для решения задач 71-80.

Рекомендуется следующая последовательность решения и оформления задачи.

Детали, изготовленные по 12-й степени точности, проверяются шаблоном. Назначить стандартные допустимые отклонения на угловые размеры шаблона

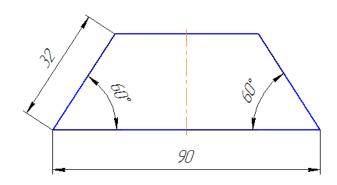


Рисунок 8 - Эскиз шаблона.

Решение

Допуски углов назначают в зависимости от номинальной длины меньшей стороны угла, т.е. 32 мм. Находим допуск угла детали

Учитывая, что погрешность угла шаблона не должна превышать 1/5 допуска детали, получим, что отклонения угловых размеров шаблона не должны превышать $AT'/5 = 12/5 = 2'\ 24"$

Находим, что соответствующие стандартные отклонения должны быть взяты по 8-й степени точности: AT'=2' [9, т.1, табл. 7.6 с. 228]

При симметричности расположения допуска AT'/2=1'. Следовательно, размер углов шаблона будут: $60^{\circ}\pm1$ '

Задача 81-90.

Расшифровать обозначение резьбы, заданной в таблице 8, определить предельные размеры диаметров резьбы.

1 405	тионици от тискодиме даниме к задачим от уо.									
№ Задачи	Наружная резьба	№ Задачи	Внутренняя резьба							
81	M6-4h-R	86	M8x1-4H5H							
82	M10-6f	87	M8-6H-20							
83	M12x1,25-5g6g	88	M12-7H-25							
84	M12-6d-R	89	M14LH-7G-40							
85	M20x2-7g6g-30	90	M16x1.5-6G-R							

Таблица 8 - Исходные данные к задачам 81-90.

Методические указания для решения задач 81-90.

Рекомендуется следующая последовательность решения и оформления задачи.

Определить предельные размеры диаметров резьбы M22-4H-40-R.

Решение

- 1. M22-4H-40-R внутренняя резьба, наружный диаметр 22 мм, с крупным шагом, степень точности по среднему и внутреннему диаметрам 4, основное отклонение H, длина свинчивания 40 мм, с закругленной впадиной.
- 2. По ГОСТ 8724-2002 определяем шаг резьбы, если он не указан в обозначении.

P=2.5 MM

3. Для диаметра D=22 мм и шага P=2,5 мм определяем номинальные размеры D_2 и D_1 :

$$D_2 = 20,376$$
 мм, $D_1 = 19,294$ мм [9, т.1, табл. 4.7 с. 111]

4. Для интервала "Св. 11,2 до 22,4"; шага P=2,5 мм и поля допуска 4H определяем предельные отклонения диаметров резьбы:

Для D:

Для D₂:

$$ES = +140 \text{ мкм} = +0,140 \text{ мм}, EI = 0; [9, т.1, табл. 4.16 с. 127]$$

Для D₁:

$$ES = +280 \text{ мкм} = +0.280 \text{ мм}; EI=0$$
 [9, т.1, табл. 4.16 с. 127]

5. Определяем предельные размеры диаметров резьбы:

 D_{max} - не номируется

$$D_{min} = D + EI = 22+0=22$$
 mm;

$$D_{2max} = D_2 + ES = 20,376 + 0,140 = 20,516 \text{ MM};$$

$$D_{2min} = D_2 + EI = 20,376 + 0 = 20,376 \text{ MM}.$$

$$D_{1\text{max}} = D_1 + ES = 19,294 + 0,280 = 19,574 \text{ MM};$$

$$D_{1min} = D_1 + EI = 19,294 + 0 = 19,294 \text{ MM}.$$

Задача 91-100.

Определить предельные размеры всех элементов шпоночного соединения (шпонка призматическая - см. табл. 9), начертить схему расположения полей допусков по ширине шпонки b.

Таблица 9 - Исхолные данные к задачам 91-100.

таолица 7	таолица 9 - исходные данные к задачам 91-100.								
№ задачи	Обозначение шпонки	Тип соединения	Диаметр вала, мм						
	bxhxl								
91	2x2x8	Свободное	8						
92	3x3x10	Нормальное	9						
93	6x6x18	Плотное	20						
94	25x14x80	Свободное	90						
95	28x16x90	Нормальное	100						
96	32x18x100	Плотное	115						
97	36x20x110	Свободное	135						
98	40x22x125	Нормальное	160						
99	45x25x140	Плотное	180						
100	50x28x160	Свободное	220						

Методические указания для решения задач 91-100.

Рекомендуется следующая последовательность решения и оформления задачи.

Дано шпоночное соединение. Шпонка призматическая 18x11x63 ГОСТ 23360-78. Диаметр вала d=65мм. Соединение нормальное.

Решение

1. Определение предельных размеров ширины шпонки b.

Таблица 10 - Предельные отклонения по ширине в шпоночных соединений с призматическими шпонками.

Соединение	Ширина	Паз		
	шпонки в	На валу в	Во втулке в	
Свободное	h9	Н9	D10	
Нормальное		N9	Js9	
Плотное		P9	P9	

Из обозначения шпонки следует, что ширина ее b = 18 мм. Поле допуска h9, т.е. b=18h9.

Предельные отклонения:

$$es=0$$
, $ei=-43mkm=-0.043mm$

Предельные размеры:

$$b_{max} = b + es = 18 + 0 = 18$$
 MM.

$$b_{min} = b + ei = 18 + (-0.043) = 17.957 \text{ MM}.$$

2. Определение предельных размеров ширины паза на валу В. Поле допуска ширины паза на валу (N9) для нормального соединения, т.е. В= 18N9.

Предельные отклонения:

$$ES = 0$$
. $EI = -43 \text{ MKM} = -0.043 \text{ MM}$

Предельные размеры:

$$B_{\text{max}}$$
: = B + ES = 18 + 0 = 18 MM.

$$B_{min} = B + EI = 18 + (-0.043) = 19.957 \text{ MM}.$$

3. Определение предельных размеров ширины паза во втулке B. Поле допуска ширины паза во втулке (Js9) для нормального соединения, т.е. B=18Js~9.

Предельные отклонения;

$$ES = +21_{MKM} = +0.021_{MM}$$

$$EI = -21 \text{ MKM} - -0.021 \text{ MM}.$$

Предельные размеры:

$$B_{max} = B + ES = 18 + 0.021 = 18.021$$
 MM.

$$B_{min} = B + EI = 18 + (-0.021) = 17.979 \text{ MM}.$$

4. Расположение полей допусков.

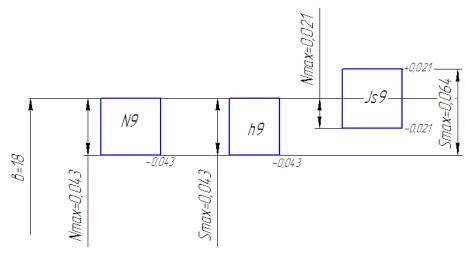


Рисунок 9 – Схема расположения полей допусков.

5. Определение предельных размеров высоты шпонки h. Из обозначения шпонки следует, что высота ее h=11 мм. Поле допуска h11, т.е. h= 11h11.

Предельные отклонения:

$$es=0$$
, $ei=-110$ mkm = -0,110mm

Предельные размеры: $h_{max} = h + es = 11 + 0 = 11 \text{мм}$,

$$h_{min} = h + ei = 11 + (-0,11) = 10,89 \text{ MM}.$$

6. Определение предельных размеров длины шпонки/

Из обозначения шпонки следует, что ее длина 1 = 63 мм. Поле допуска h 14, r.e. <math>l = 63h14.

Предельные отклонения:

$$es = 0$$
, $ei = -740$ мкм $= -0.74$ мм. [9, т.1, табл. 3.19 с. 39]

Предельные размеры:

$$1_{\text{max}} = 1 + \text{es} = 63 + 0 = 63 \text{ MM},$$

$$1_{\text{min}} = 1 + ei = 63 + (-0.74) = 62.26 \text{ MM}.$$

7. Определение предельных размеров длины паза L.

Поле допуска длины паза H15, т.е. L=63H15.

Предельные отклонения:

$$ES = 1200 \text{ MKM} = 1.2 \text{ MM}, EI = 0$$

Предельные размеры:

$$L_{\text{max}} = L + ES = 63 + 1, 2 = 64, 2 \text{ MM},$$

$$L_{min} = L + EI = 63 + 0 = 63$$
 MM.

8. Определение предельных размеров глубины паза на валу

$$t_1 = 7 \text{ MM}.$$

$$d - t_1 = 65 - 7 = 58 \text{ mm}.$$

Для размера (d-t₁) нижнее отклонение принимается равным - 0,2 мм [9, т.1, табл. 6.3 с. 212].

$$(d-t_1)_{max} = 58+0=58 \text{ MM},$$

$$(d-t_1)_{min} = 58 + (-0,2) = 57,8$$
 MM.

9. Определение предельных отклонений глубины паза во втулке

$$t_2 = 4.4 \text{ MM}.$$

$$d + t_2 = 65 + 4,4 = 69,4$$
 MM.

Для размера $(d+t_2)$ верхнее отклонение принимается равным + 0,2 мм [9, т.1, табл. 6.3 с. 212].

$$(d+t_2)_{\text{max}} = 69,4+0,2=69,6 \text{ MM},$$

$$(d+t_2)_{min} = 69,4+0=69,4$$
 MM.

Задача 101-110.

Расшифровать обозначение шлицевой детали, заданной в таблице 11, определить, предельные размеры ее элементов. Построить, схему расположения полей допусков элементов шлицевой детали.

таолица 11 - Исходиме даниме к задачам 101-110.								
№ задачи	Деталь	Обозначение шлицевой детали						
101	Вал	d-6x11f7x14x3h7						
102	Втулка	D-6x16x20H7x4F8						
103	Вал	b-6x21x25a11x5d9						
104	Втулка	d-8x32H7x36x6H8						
105	Вал	D-8x36x42f7x7d9						
106	Втулка	b-8x42x46H12x8F8						
107	Вал	d-8x46g6x54x9f8						
108	Втулка	D-8x52x60H8x10D9						
109	Вал	b-8x62x72a11x12k7						
110	Втулка	d-10x72H8x82x12D9						

Таблица 11 - Исхолные ланные к залачам 101-110.

Методические указания для решения задач 101-110.

Рекомендуется следующая последовательность решения и оформления задачи.

Определить предельные размеры элементов шлицевой втулки d-6x28H7x34x7F8.

Решение

- 1. d-6x28H7x34x7F8 шлицевая втулка с центрированием по внутреннему диаметру (d), числом зубьев Z=6, внутренним диаметром d=28, с полем допуска H7, наружным диаметром D=34 мм, шириной впадины b=7 с полем допуска F8. Поле допуска нецентрирующего наружного диаметра не указано. Оно определяется по таблице ЕСДП СЭВ. Поле допуска H12. /9, т.1, табл. 6.13 с. 216/
 - 2. Определяются предельные размеры внутреннего диаметра d=28H7.

Предельные отклонения:

$$ES = +21$$
 мкм = $+0,021$ мм, $EI = 0$ [9, т.1, табл. 3.20 с. 42]

Предельные размеры:

$$d_{\text{max}} = d + ES = 20 + 0.021 = 28.021 \text{ MM},$$

$$d_{min} = d + EI = 20 + 0 = 20$$
 mm.

5. Определяются предельные размеры наружного диаметра D = 34H12.

Предельные отклонения:

$$ES = +250$$
 мкм = -0,25мм. $EI = 0$ [9, т.1, табл. 3.20 с. 44]

Предельные размеры:

$$D_{\text{max}} = D + ES = 34 + 0.25 = 34.25 \text{ MM},$$

$$D_{min} = D + EI = 34 + 0 = 34 \text{ mm}$$

4. Определяются предельные размеры ширины впадины b= 7F8.

Предельные отклонения:

$$ES = +35 \text{ MKM} = +0.035 \text{ MM},$$

$$EI = +13$$
 мкм = $+0.013$ мм [9, т.1, табл. 3.20 с. 43]

Предельные размеры:

$$b_{max} = b + ES = 7 + 0.035 = 7.035 \text{ MM},$$

 $b_{min} = b + EI = 7 + 0.013 = 7.013 \text{ MM}.$

5. Схема расположения полей допусков.

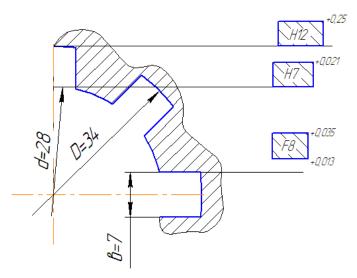


Рисунок 10 - Схема расположения полей допусков.

Задача 111-120.

Расшифровать обозначение и определить годность прямозубых зубчатых колес наружного зацепления по заданным степеням точности, видам сопряжения и видам допуска бокового зазора, если известны действительные (измеренные) значения показателей (таблица 12).

Таблица 12 - Исходные данные к задачам 111-120.

No	Модуль	Число	Степень	F_{r}	Действительные		3E	ачения		
задачи			точности, вид		пока	азател	ей, м	ИКМ		
		зубьев	сопряжения,		F_{vw}	f_p	f_f	E_{HS}	Пятно	
			вид допуска						контакт	a
			бокового зазора						По	По
									высоте	длине
111	1,25	40	7-E	35	20	-15	14	80	50	65
112	1,5	50	8-7-7-B	40	31	+16	10	160	56	68
113	1,75	30	8-7-6-A _B	48	26	+12	12	350	54	72
114	2	50	6-5-5-B	27	19	-5	4	245	67	83
115	2,25	40	$7-6-7-B_{\rm C}$	30	18	+9	6	200	50	55
116	2,5	40	7-6-6-D _C	32	25	+8	7	134	65	65
117	2,75	30	6-7-7-C _d	27	14	+16	14	172	58	62
118	3	40	6-B/IV	26	20	+9	4	235	51	78
119	2	50	4-4-N-D _C	8	5	-3	3	90	-	-
120	1,5	60	8-D	46	31	+22	16	152	47	52

Методические указания для решения задач 111-120.

Рекомендуется следующая последовательность решения и оформления задачи.

Определить годность зубчатого колеса 8-7-6-Ва ГОСТ 1643-81, если известны: модуль m=3 мм, число зубьев z =30 мм, действительные значения показателей:

$$F_{rr} = 40$$
 MKM, $F_{vwr} = 30$ MKM, $f_{ptr} = +12$ MKM, $f_{fr} = 8$ MKM, $E_{HSr} = 190$,

Пятно контакта: по высоте - 65%, по длине - 80%.

Решение

- 1. 8-7-6-Ва ГОСТ 1643-81 цилиндрическая зубчатая передача со степенью 8 по нормам кинематической точности, со степенью 7 по нормам плавности работы, степенью 6 по нормам контакта зубьев, с видом сопряжения "В", видом допуска на боковой зазор "а" и соответствием между видом сопряжения и классом отклонений межосевого расстояния.
 - 2. Диаметр делительной окружности $D=m \cdot z = 3 \cdot 30 = 90$ мм.
- 3. Показатели F_r и F_{vw} характеризуют кинематическую точность зубчатой передачи. Для степени точности 8, делительного диаметра 90 мм и модуля 3 мм по ГОСТ 1643-81 определяем значения допусков: $F_r = 45$ мкм, $F_{vw} = 28$ мкм

Условия годности:
$$F_{rr} \leq F_{r}$$
 , $F_{vwr} \leq F_{vw}$, $40 < 45$ $30 > 28$ не соблюдается.

Следовательно, по показателю F_{vw} колесо негодное.

4. Показатели f_{pt} и ff характеризуют плавность работы зубчатой передачи. Для степени точности 7, D=90 мм, m=3 мм по ГОСТ 1643-81 определяем значения допусков $f_{pt}=14$ мкм, ff = 11 мкм.

Условия годности:
$$f_{ptr} \leq f_{pt}, \;\; ff_r \leq ff$$
 $12 < 14 \;\; 8 < 11 \; \text{соблюдено}.$

Следовательно, по показателям колесо годное.

5. Показатель E_{HS} характеризует боковой зазор зубчатой передачи. По виду сопряжения "В", степени точности по нормам плавности 7 и делительному диаметру 90 мм определяем величину наименьшего дополнительного смещения исходного контура: $E_{HS} = -160$ мкм.

По виду допуска на боковой зазор "а" и допуску на радиальное биение F_r =45 мкм допуск на смещение исходного контура $T_{\rm H}$ = 180 мкм.

Условия годности: -
$$E_{HS} \le E_{HSr} \le -E_{H} + T_{H}$$

160 < 190 < 340 соблюдено, следовательно, колесо годное.

6. Для 6-й степени точности по нормам полноты контакта зубьев определяем, что относительное суммарное пятно контакта должно быть по высоте не менее 50%, а по длине не менее 70%, фактически по высоте 65%, а по длине 80%. Следовательно, колесо годное.

Задача 121-125.

По заданным номинальным размерам и предельным отклонениям составляющих звеньев определить номинальный размер и предельные отклонения замыкающего звена (см. табл.13). Расчет вести на полную взаимозаменяемость. Составляющие звенья для всех вариантов задач: $A_1 = 120 \pm 0,027; \ A_2 = 40 \binom{+0,019}{+0,080}; \ A_3 = 20_{-0,021}; \ A_4 = 10 \binom{-0,065}{-0.195}; \ A_5 = 50^{+0,019}$.

№	Составляющие	Замыкающее	Размерная цепь	Эскиз
задачи	звенья	звено		
121	$A_2; A_3; A_4; A_5$	A_1		<u>A4</u>
122	$A_1; A_3; A_4; A_5$	A_2	A2 A3 A4 A5 A1	
123	$A_1; A_2; A_4; A_5$	A_3	× ///	
124	$A_1; A_2; A_3; A_5$	A_4		12 12 15
125	$A_1; A_2; A_3; A_4$	A_5		A2 A3 A5 A1

Таблица 13 - Исхолные данные к задачам 121-125.

Методические указания для решения задач 121-125.

Рекомендуется следующая последовательность решения и оформления задачи.

По заданным номинальным размерам и предельным отклонениям составляющих звеньев определить номинальный размер и предельные отклонения замыкающего звена. Составляющие звенья: A_1 =120 \pm 0,027; A_2 = 40 $_{+0.008}^{+0.019}$; A_3 =20 $_{-0.021}$;

$$A_4=30^{-0.065}_{-0.195}$$
;

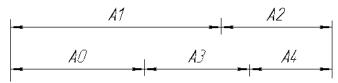


Рисунок 11 - Схема размерной цепи.

Решение:

1. Уравнение размерной цепи:

$$A0 = (A1 + A2) - (A3 + A4)$$

- 2. Звенья А1 и А2 увеличивающие; А3 и А4 уменьшающие.
- 3. Номинальный размер замыкающего звена:

$$A0=(120+40)-(20+30)=110 \text{ MM}$$

4. Верхнее отклонение замыкающего звена:

$$ES(A0) = \sum ES(A_{i \text{ VB}}) - \sum EI(A_{i \text{ VM}}) = (0.027 + 0.019) - (-0.021 + (-0.195)) = 0.262 \text{ MM}$$

5. Нижнее отклонение замыкающего звена:

$$EI(A0) = \sum EI(A_{i \text{ VB}}) - \sum ES(A_{i \text{ VM}}) = (-0.027 + 0.08) - (0 + (-0.065)) = 0.118 \text{ MM}$$

6. Допуск замыкающего звена:

TA0 = ES(A0) - EI(A0) = 0.262 - 0.118 = 0.144 mm.

7.
$$A_0 = 110({}^{+0,262}_{+0,118})$$

Задача 126-130.

По заданным в табл. 14 номинальным размерам всех звеньев размерной цепи и заданному допуску замыкающего звена определить допуски составляющих звеньев.

1	аолица	a 14 - Y	тсходн	ыс дан	ные к задачам 120-130.	•
$N_{\underline{0}}$	Разме	еры со	ставля	ющих	Размер замыкающего	Размерная цепь
задачи	звень	ев, мм			звена, мм	
	A_1	A_2	A_3	A_4		
126	22	38	15		4 ^{+0,033}	
127	30	40	18	49	3 ^{+0,082}	. <i>A3 A0 A4</i> .
128	35	45	22	56	2 ^{+0,143}	A1 A2
129	40	50	28		3 ^{+0,231}	
130	28	72.	32.	64	4+0,392	

Таблица 14 - Исходные данные к задачам 126-130.

Методические указания для решения задач 126-130.

Рекомендуется следующая последовательность решения и оформления задачи.

По заданным номинальным размерам всех звеньев размерной цепи и заданному допуску замыкающего звена определить допуски составляющих звеньев.

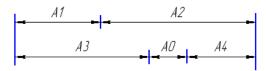


Рисунок 12 - Размерная цепь.

 $A_1 = 20$

 $A_2 = 45$

 $A_3 = 10$

 $A_4 = 52$

 $A_0 = 3^{+0,538}$

Решение:

1. Определяются числовые значения единиц допусков составляющих звеньев по таблице 15:

Таблица 15 — Значение единицы допуска і для интервалов номинальных размеров.

Основные	До	Св. 3	Св. 6	Св. 10	Св. 18	Св. 30	Св. 50	Св. 80
интервалы	3	до 6	до 10	до 18	до 30	до 50	до 80	до 120
размеров, мм								
i, MKM	0,55	0,73	0,9	1,08	1,31	1,56	1,86	2,17

 A_1 =20 mm i=1,31 mkm A_2 =45 mm i=1,56 mkm A_3 =10 mm i=0,90 mkm A_4 =52 mm i=1,86 mkm

Находится число единиц допуска:

 $a{=}TA_0 \ / {\sum} i_i = 538/(1,31{+}1,\!56{+}0,\!90{+}1,\!86) {=} 96$

Ближайшее число единиц а=10 соответствует 11 квалитету (таблица 16)

Таблица 16 — Количество единиц допуска а в допусках 5 — 17 квалитетов по ГОСТ 25346-2013.

Квалитет	5	6	7	8	9	10	11	12	13	14	15	16	17
a	7	10	16	25	40	64	100	160	250	400	640	1000	1600

2. По таблице 17 на размеры составляющих звеньев назначаются допуски по 11 квалитету.

Таблица 17 — Значение допусков 3-14 квалитетов для размеров до 500 мм Γ OCT 25346-2013.

Интервалы					Нс	мер	квали	тета				
размеров,мм	3	4	5	6	7	8	9	10	11	12	13	14
Свыше 3 до 6	2,5	4	5	8	12	18	30	48	75	120	180	300
»6» 10	2,5	4	6	9	15	22	36	58	90	150	220	360
»10» 18	3	5	8	11	18	27	43	70	110	180	270	430
»18» 30	4	6	9	13	21	33	52	84	130	210	330	520
»30»50	4	7	11	16	25	39	62	100	160	250	390	620
»50» 80	5	8	13	19	30	46	74	120	190	300	460	740
»80» 120	6	10	15	22	35	54	87	140	220	350	540	870
»120» 180	8	12	18	25	40	63	100	160	250	400	630	1000
»180» 250	10	14	20	29	46	72	115	185	290	460	720	1150
»250» 315	12	16	23	32	52	81	130	210	320	520	810	1300
»315» 400	13	18	25	36	57	89	140	230	360	570	890	1400
»400» 500	15	20	27	40	63	97	155	250	400	630	970	1550

При этих допусках не обеспечивается равенство суммы допусков составляющих звеньев. Поэтому считается одно звено A_3 увязочным, допуск для него вычисляется по формуле:

 $TA_3 = TA_0 - (TA_1 + TA_2 + TA_4) = 538 - (130 + 160 + 190) = 58$ мкм

По таблице 17 допуск соответствует 10 квалитету.

Принимается условно, что увеличивающие звенья имеют отклонения положительные, а уменьшающие - отрицательные.

$$A_1=20^{+0.13}$$
; $A_2=45^{+0.16}$; $A_3=18_{-0.058}$; $A_4=52_{-0.19}$; $A_0=3^{+0.538}$

Производим проверку:

 $TA_0 = \sum TA_i = 0.13 + 0.16 + 0.58 + 0.19 = 0.538 \text{ mm}$

Вопросы со 131 по 150.

- 131. Значение взаимозаменяемости при современной организации производства.
- 132. Определение взаимозаменяемости нее виды (функциональная и геометрическая, полная и неполная, внешняя и внутренняя).
- 133. Размеры (номинальный, действительный, предельный). Допуск размера.
- 134. Посадка, виды посадок.
- 135. Образование посадок в системе отверстия и системе вала.
- 136. Отклонения и допуски формы поверхностей: определения и виды отклонений.
- 137. Отклонения и допуски расположения поверхностей: определения и виды отклонений.
- 138. Шероховатость поверхности: параметры шероховатости, их определение.
- 139. Условное обозначение шероховатости поверхности.
- 140. Государственная система обеспечения единства измерений (ГСИ), её назначение и содержание.
- 141. Основные метрологические показатели измерительных средств.
- 142. Гладкие калибры: определение, классификация, условное обозначения.
- 143. Выбор измерительных средств в машиностроении: факторы, влияющие на выбор этих средств.
- 144. Допуски на угловые размеры.
- 145. Методы и средства измерения углов и конусов в зависимости от их точности.
- 146. Контроль резьбы калибрами.
- 147. Понятие о шлицевых калибрах.
- 148. Размерные цепи: термины, определения и обозначения.
- 149. Классификация средств автоматизации и контроля.
- 150. Активный контроль. Виды устройств активного контроля.
- 151. Сущность сертификации.
- 152. История развития.
- 153. Этапы проведения сертификации.
- 154. Правовые основы сертификации.
- 155. Международная сертификация.
- 156. Сертификация систем обеспечения качества.
- 157. Организационно-методические принципы сертификации.
- 158. Правила по проведению сертификации.
- 159. Порядок проведения сертификации.
- 160. Закон РФ "О сертификации продукции и услуг».
- 161. Области применения добровольной и обязательной сертификации.
- 162. Принципы организации работ по сертификации систем качества (по ГОСТ Р 40.002-2000).
- 163. Схемы сертификации продукции.
- 164. Схемы сертификации услуг.
- 165. Экологическая сертификация.

6. Варианты заданий на контрольную работу для специальности 15.02.08.

Таблица 18 – Варианты заданий на контрольную работу.

Первая		Последняя цифра шрифта																												
цифра шрифта	0			1			2			3			4			5	1		6			7			8			9		
0				1	56	121	2	51	122	3	60	123	4	59	124	5	58	125	6	57	126	7	56	127	8	52	128	9	51	129
				21	99	136	28	98	137	22	34	138	25	35	106	23	95	140	21	94	141	24	38	103	28	39	102	25	91	144
				42	37	163	45	38	162	50	68	164	41	69	139	42	36	163	43	37	164	46	62	142	43	63	143	44	40	156
				71	66	81	72	67	82	73	83	107	74	84	165	75	70	85	76	61	86	77	87	158	78	88	157	79	64	89
1	7	77	127	8	57	126	9	55	33	10	52	124	11	59	123	12	96	38	13	93	37	14	80	130	15	79	129	10	80	92
	30	81	109	22	82	100	29	83	125	26	84	108	23	85	105	24	72	122	27	71	121	23	88	104	26	89	101	27	53	130
	43	65	135	41	64	133	44	97	132	49	62	131	42	61	150	43	86	149	44	87	148	47	68	147	44	67	146	45	90	145
	58	36	159	76	39	160	75	63	161	74	36	151	73	35	152	60	70	162	59	69	161	60	40	159	55	39	160	66	31	155
2	6	78	128	7	79	121	8	80	122	9	60	123	10	72	124	11	73	125	12	74	126	13	75	127	16	78	128	11	71	121
	25	66	108	21	67	101	27	96	141	26	69	109	28	70	104	23	97	144	29	92	145	24	63	105	22	64	100	25	54	148
	42	40	134	50	32	134	43	68	156	48	34	142	41	39	143	44	61	158	45	62	159	48	38	146	45	32	147	46	93	154
	56	81	158	59	82	157	54	37	83	71	84	154	53	85	153	58	36	86	53	31	87	51	88	162	52	89	161	65	40	90
3	5	57	129	6	76	128	19	60	63	18	74	126	17	73	125	16	72	70	15	71	69	14	76	128	17	55	67	12	53	94
	30	90	107	24	89	102	29	88	127	22	87	110	29	86	103	28	85	124	27	84	123	21	83	106	26	82	127	30	72	122
	41	31	133	49	64	135	42	95	140	47	62	135	46	35	134	45	98	133	46	91	132	49	33	131	46	99	150	47	81	149
	77	35	153	55	38	154	75	33	155	53	40	155	59	61	156	54	32	157	57	37	160	52	68	163	77	39	164	66	31	153
4	4	78	130	5	79	129	4	80	130	3	71	121	2	72	122	1	73	123	20	80	122	19	77	129	18	76	126	13	54	123
	26	39	106	30	32	103	22	94	139	29	91	136	23	33	102	28	99	140	24	34	110	27	38	107	25	98	143	26	73	144
	50	66	132	48	67	136	41	31	163	50	34	160	49	70	139	48	36	156	47	62	141	50	63	142	47	32	165	48	95	152
	51	81	152	58	82	164	54	68	83	51	69	84	52	85	159	58	61	86	55	87	155	56	88	151	51	64	89	65	34	90

7. Подготовка к промежуточной аттестации

Промежуточная аттестация по учебной дисциплине ОП 05 Метрология, стандартизация и сертификация - дифференцированный зачёт в устной форме.

Основанием для выставления зачёта являются:

- текущие оценки успеваемости студентов;
- результаты самостоятельной контрольной работы;
- результаты выполнения практических работ;
- обоснованность и четкость изложения ответа, в том числе на практико-ориентированные вопросы.

Чтобы успешно получить зачёт, необходимо выполнять все виды самостоятельной работы, практические и контрольные работы, активно участвовать в опросах, обсуждениях, дискуссиях на уроках, предусмотренных рабочей программой и календарно-тематическим планом ОП 05 Метрология, стандартизация и сертификация, участвовать в научно-поисковой работе.

Вопросы к зачёту по ОП 05 Метрология, стандартизация и сертификация

- 1. Категории и виды стандартов.
- 2. Основные сведения о качестве продукции.
- 3. Точность в технике.
- 4. Поверхности, размеры.
- 5. Отклонения и допуски.
- 6. Графическое изображение допусков и отклонений.
- 7. Общие сведения о посадках.
- 8. Посадки в системе отверстия и в системе вала.
- 9. Квалитеты.
- 10. Образование посадок в ЕСДП СЭВ.
- 11. Обозначение полей допусков и посадок на чертежах.
- 12. Допуски формы и расположения поверхностей.
- 13. Обозначение допусков на чертежах.
- 14. Система стандартизации.
- 15. Ряды предпочтительных чисел.
- 16. Параметры шероховатости.
- 17. Обозначение параметров шероховатости на чертежах.
- 18. Методы решения размерных цепей.
- 19. Допуски и посадки шпоночных соединений.
- 20. Допуски и посадки шлицевых соединений.
- 21. Образование посадок подшипников качения.
- 22. Органы и службы по стандартизации.
- 23. Метрология, основные положения.
- 24. Гладкие калибры и их допуски.
- 25. Штангенинструменты.
- 26. Микрометрические инструменты.
- 27. Система сертификации.